If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-171=0
a = 2; b = 6; c = -171;
Δ = b2-4ac
Δ = 62-4·2·(-171)
Δ = 1404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1404}=\sqrt{36*39}=\sqrt{36}*\sqrt{39}=6\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{39}}{2*2}=\frac{-6-6\sqrt{39}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{39}}{2*2}=\frac{-6+6\sqrt{39}}{4} $
| k=1∑12(k+4k) | | 6x=5(3x+4) | | 4x-8=-18+2x | | -11x=-22x | | 0.70+0.12c=2.50 | | -13=5g+32 | | P=2x82+2x134 | | 5m-m+2=14 | | -22+3x+6=-26 | | 5x7^=117 | | p=2L+2W;L=82,W=134 | | 3-f=-12 | | -7x+6=6x-85 | | 3g=³/² | | (3x)+17=19 | | 5x+2x–9=40 | | n/5+6=2 | | 2x(3x-3)+7(1+6x)=0 | | -6h+h=10 | | A+1/4x1/4=7/16 | | -7m+8=-13 | | -6y+16=52 | | x2-10x-150=0 | | -27=-4x-(-17) | | 0.85x-19=59 | | 1.16x-19=59 | | x=(6/14)*18 | | 11)-15y=25 | | A+b×b=7/16 | | 0x+1=0x+1 | | 6/7x-19=59 | | 15=n/15 |